~{JGR 8vQ IzWwR5SC5D2V?bD#DbO5M3~} ~{3v?b~} ~{Hk?b~} ~{2iQ/5H9&D\~} ~{?IRTWw@)3d~} ~{TZ~}JDK1.4.2~{OBM(9}~}
上傳時間: 2015-02-22
上傳用戶:ommshaggar
b to b 模式 電子商務系統 ,c# 開發 , B/S結構
上傳時間: 2014-01-20
上傳用戶:hanli8870
a XOR b> a,然后a XOR b< b,and both a and b are dependent data
上傳時間: 2014-01-27
上傳用戶:yxgi5
HT45RM03A 在電動自行車控制器中的應用
上傳時間: 2016-12-29
上傳用戶:水口鴻勝電器
樣板 B 樹 ( B - tree ) 規則 : (1) 每個節點內元素個數在 [MIN,2*MIN] 之間, 但根節點元素個數為 [1,2*MIN] (2) 節點內元素由小排到大, 元素不重複 (3) 每個節點內的指標個數為元素個數加一 (4) 第 i 個指標所指向的子節點內的所有元素值皆小於父節點的第 i 個元素 (5) B 樹內的所有末端節點深度一樣
上傳時間: 2017-05-14
上傳用戶:日光微瀾
歐幾里德算法:輾轉求余 原理: gcd(a,b)=gcd(b,a mod b) 當b為0時,兩數的最大公約數即為a getchar()會接受前一個scanf的回車符
上傳時間: 2014-01-10
上傳用戶:2467478207
數據結構課程設計 數據結構B+樹 B+ tree Library
上傳時間: 2013-12-31
上傳用戶:semi1981
* 高斯列主元素消去法求解矩陣方程AX=B,其中A是N*N的矩陣,B是N*M矩陣 * 輸入: n----方陣A的行數 * a----矩陣A * m----矩陣B的列數 * b----矩陣B * 輸出: det----矩陣A的行列式值 * a----A消元后的上三角矩陣 * b----矩陣方程的解X
上傳時間: 2015-07-26
上傳用戶:xauthu
Floyd-Warshall算法描述 1)適用范圍: a)APSP(All Pairs Shortest Paths) b)稠密圖效果最佳 c)邊權可正可負 2)算法描述: a)初始化:dis[u,v]=w[u,v] b)For k:=1 to n For i:=1 to n For j:=1 to n If dis[i,j]>dis[i,k]+dis[k,j] Then Dis[I,j]:=dis[I,k]+dis[k,j] c)算法結束:dis即為所有點對的最短路徑矩陣 3)算法小結:此算法簡單有效,由于三重循環結構緊湊,對于稠密圖,效率要高于執行|V|次Dijkstra算法。時間復雜度O(n^3)。 考慮下列變形:如(I,j)∈E則dis[I,j]初始為1,else初始為0,這樣的Floyd算法最后的最短路徑矩陣即成為一個判斷I,j是否有通路的矩陣。更簡單的,我們可以把dis設成boolean類型,則每次可以用“dis[I,j]:=dis[I,j]or(dis[I,k]and dis[k,j])”來代替算法描述中的藍色部分,可以更直觀地得到I,j的連通情況。
標簽: Floyd-Warshall Shortest Pairs Paths
上傳時間: 2013-12-01
上傳用戶:dyctj
We have a group of N items (represented by integers from 1 to N), and we know that there is some total order defined for these items. You may assume that no two elements will be equal (for all a, b: a<b or b<a). However, it is expensive to compare two items. Your task is to make a number of comparisons, and then output the sorted order. The cost of determining if a < b is given by the bth integer of element a of costs (space delimited), which is the same as the ath integer of element b. Naturally, you will be judged on the total cost of the comparisons you make before outputting the sorted order. If your order is incorrect, you will receive a 0. Otherwise, your score will be opt/cost, where opt is the best cost anyone has achieved and cost is the total cost of the comparisons you make (so your score for a test case will be between 0 and 1). Your score for the problem will simply be the sum of your scores for the individual test cases.
標簽: represented integers group items
上傳時間: 2016-01-17
上傳用戶:jeffery